Radiation Protection with Nanoparticles

نویسنده

  • Cheryl H. Baker
چکیده

At the onset of radiation exposure, free radicals are formed through ionizing reactions that are then capable of destroying normal tissues. While cells release a level of protective molecules, such as glutathione and metallothionine, they are not capable of blocking all damage, thus resulting in the death of normal tissues and therefore, we must continue to develop strategies to protect normal tissues from radiation-induced damage. One such strategy is the development of radiation protectors. Several compounds have been described, but Amifostine (Ethyol), whose active free thiol metabolite WR-1065 has been shown to prevent both radiation-induced cell death and mutagenesis while facilitating the repair of normal cells remains the only agent currently in clinical use. Major limitations to the clinical use of Amifostine are its short half-life, daily dosing requirements, toxicity based on route of administration, and its cost. Recent studies have shown the effects of engineered cerium oxide nanoparticles for protection against radiation-induced damage in a variety of tissue types. The role of nanoparticles as radioprotectants is a cutting-edge development in decades of scientific interest regarding the protection of normal cells and tissues from radiation. The chemistry of engineered cerium oxide nanoparticles supports a potential role as a biological free radical scavenger or antioxidant. The work presented in this review article will address the effectiveness of cerium oxide nanoparticles in radioprotection in a variety of cells and in animal models during radiation exposure which will encourage the development of innovative and new approaches to radiation protection, using nanotechnology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Ultraviolet Protection Factor of Pure Cotton and Cotton Coated with Titanium Dioxide Nanoparticles using the Electrospinning Method with Two Ultraviolet-C Generators

Introduction: Protection against harmful effects of ultraviolet radiation (UV) is measured under Ultraviolet Protection Factor (UPF) scale. The utilization of protective clothing is the best way to deal with the damage caused by ultraviolet radiation. The purpose of this study was to compare the ultraviolet ray protective factor of pure cotton and cotton coated with ti...

متن کامل

Novel Semisolid Design Based on Bismuth Oxide (Bi2O3) nanoparticles for radiation protection

Objective(S): The dangerous effects of X-ray have been elucidated by scientific studies in occupational health hygiene.  X-ray protective like an apron, thyroid shield and gloves have been made of lead (Pb) to protect against X-ray. However, such equipment makes a lot of safety and health problems such as toxicity, weight, inflexibility and troubles usage in a physician. To ove...

متن کامل

Feasibility of Fabricating PAN/TiO2 Electrospinning Nanofibers with UV Protection Property

Introduction: The skin, can be exposed to harmful factors like ultraviolet radiation (UV). Exposure to this physical hazardous agent could be contributed to pigmentation, erythemas, early aging, skin cancer, and DNA damage. The aim of this study, therefore, was to fabricate the polyacrylonitrile (PAN) nanofibers with the UV protection property by the use of various concentrations of titanium di...

متن کامل

Biobased Nanoparticles for Broadband UV Protection with Photostabilized UV Filters.

Sunscreens rely on multiple compounds to provide effective and safe protection against UV radiation. UV filters in sunscreens, in particular, provide broadband UV protection but are heavily linked to adverse health effects due to the generation of carcinogenic skin-damaging reactive oxygen species (ROS) upon solar irradiation. Herein, we demonstrate significant reduction in the ROS concentratio...

متن کامل

Cerium oxide nanoparticles: influence of the high-Z component revealed on radioresistant 9L cell survival under X-ray irradiation.

UNLABELLED This article pioneers a study into the influence of the high-Z component of nanoparticles on the efficacy of radioprotection some nanoparticles offer to exposed cells irradiated with X-rays. We reveal a significant decrease in the radioprotection efficacy for cells exposed to CeO2 nanoparticles and irradiated with 10 MV and 150 kVp X-rays. In addition, analysis of the 150 kVp surviva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014